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Abstract

In this study, structural images of 1048 healthy subjects from the Human Connectome Proj-

ect Young Adult study and 94 from ADNI-3 study were processed by an in-house tractogra-

phy pipeline and analyzed together with pre-processed data of the same subjects from

braingraph.org. Whole brain structural connectome features were used to build a simple cor-

relation-based regression machine learning model to predict intelligence and age of healthy

subjects. Our results showed that different forms of intelligence as well as age are predict-

able to a certain degree from diffusion tensor imaging detecting anatomical fiber tracts in the

living human brain. Though we did not identify significant differences in the prediction capa-

bility for the investigated features depending on the imaging feature extraction method, we

did find that crystallized intelligence was consistently better predictable than fluid intelli-

gence from structural connectivity data through all datasets. Our findings suggest a practical

and scalable processing and analysis framework to explore broader research topics

employing brain MR imaging.

Introduction

The connectome—the entire map of neural connections—uniquely represents every subject’s

gender, age and intelligence like a fingerprint [1]. Intelligence is known to be affected by, e.g.,

topological properties of brain networks such as characteristic path length and global network

efficiency, respectively [2, 3]. The association between a lower characteristic path length and

IQ has also been described for resting state functional MR imaging (rs-fMRI) networks [4].

Predicting not only gender [5, 6] and age [7, 8] but also different forms of intelligence [5, 6, 9–

11] in individual subjects made significant progress by using rs-fMRI. However, far less is

known to what degree the underlying structural connectome, the backbone of the functional

interactions, is also predictive of age and intelligence in cognitively normal adults. Several

studies have tested the predictability of brain age using more advanced machine learning mod-

els. For example, Lin et al. predicted older individuals’ age using artificial neural networks [12]
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and Taoudi-Benchekroun et al. used deep neural networks and random forests to predict the

age of infants [13].

Previous studies suggest a distinct nature with normal aging between crystallized and fluid

intelligence [14]. Fluid intelligence shows one’s ability to acquire new knowledge and is

reflected in problem-solving and adaptation to unknown environments therefore it examines

cognitive tasks such as cognitive flexibility, working memory, and information processing

speed, while crystallized intelligence more reflects experience-based knowledge and the ability

to access it and is e.g. measured by vocabulary and decoding tasks [15–18]. Shokri-Kojori et al.

[19] compared age-related variance between younger and older adults (100 subjects) for gray

matter (GM) and white matter (WM) tissue-specific age scores. They found that the WM age

score accounted for significantly more variance in chronological age and was negatively associ-

ated with crystalized intelligence in older adults. Góngora et al. [20] reconstructed 10 tracts by

deterministic tractography in 83 healthy individuals from the Cuban Human Brain Mapping

Project. Their results showed predictive effects of the forceps minor tract on crystallized intelli-

gence and of the superior longitudinal fasciculus on fluid intelligence.

In this study, we explored how well different intelligence measures and age of cognitively

normal adult subjects can be predicted from the structural connectome as quantified by diffu-

sion-weighted imaging (DWI). Specifically, we processed DWI data of HCP young adult (1048

subjects) and ADNI-3 (94 cognitive normal elderly subjects) datasets to reconstruct whole

brain structural connectome features by our in-house tool, NICARA. Then, we used NICARA

extracted features to apply the correlation-based regression (CBR) machine learning method

[21] to predict age as well as total, fluid and crystallized intelligence. A similar approach was

also suggested by Shen et al. [22]. To further explore the predictive capabilityof the CBR ML

model and allow for additional statistical comparisons, we also included the structural connec-

tome features of the HCP dataset preprocessed by braingraph.org available with different

parcellations.

Materials and methods

Ethics statement

According to national law and institutional rules research involving the analysis of existing

data, where the data is either already publicly available or will be analyzed such that individual

subjects cannot be identified is exempt from IRB oversight.

Datasets

We investigated the prediction capability for different intelligence measures and age of two dif-

ferent DTI pipelines (NICARA [23] and braingraph.org [24]) based on structural connectivity

data of 1048 subjects from the Human Connectome Project (HCP) young adult study [25].

Investigated features were age, total intelligence, fluid intelligence, and crystallized intelligence

(Table 1). The intelligence measures were unadjusted cognitive function composite score, fluid

cognition composite score, and crystallized cognition composite score, respectively, based on

the NIH toolbox [15].

The braingraph.org database was constructed by deterministic ROI-based fiber tracking

(10 × averaged) of 1064 healthy subjects from the HCP Young Adult dataset. It was available

with five different sets of ROIs (86, 129, 234, 463 and 1015 ROIs) and therefore also provides a

good opportunity to investigate the influence of the parcellation method on the prediction

outcome.

The full HCP dataset consisted of 1065 subjects, and we excluded subjects for whom no

data was available from braingraph.org (2 subjects) and for whom not all investigated features
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were available (15 subjects). After this, 1048 subjects (S1 Table) remained for the analysis (484

male, 564 female).

Since the age range of subjects from the HCP Young Adult cohort is relatively small (22–37

years with a mean of 28.75 years and a standard deviation of 3.68 years; Table 1), we decided

to additionally include a second cohort with adult and aged healthy subjects from the ADNI-3

study of the Alzheimer’s Disease Neuroimaging Initiative [26]. We used this second cohort (S2

Table) with 94 control subjects (40 male, 54 female) with an age range from 56.5 to 91.5 years

(mean: 74.43 years, standard deviation: 7.86 years; Table 2) to confirm age predictability from

connectomes extracted by our in-house pipeline. Fig 1 shows the age distribution of male and

female subjects from both studies.

Data processing

We processed structural connectomes of 1048 subjects from the HCP young adult study as

well as the 94 ADNI subjects. In-house processing pipelines used 379 ROIs with 360 cortical

ROIs (HCP-MMP1.0, Human Connectome Project Multi-Modal Parcellation version 1.0 atlas

[27] and 19 subcortical ROIs (Harvard-Oxford subcortical atlas [28–30]), and 50 million

streamlines for the probabilistic whole brain tractography. As comparison datasets to better

assess the influence of different parcellations, we downloaded preprocessed connectivity data

derived from the same HCP subjects available from the braingraph.org database [24] that have

been obtained with different processing routines. braingraph.org datasets were available with

five different numbers of ROIs (86, 129, 234, 463 and 1015 ROIs).

In our in-house processing pipeline, at first the T1w images get defaced using SPM12

(https://www.fil.ion.ucl.ac.uk/spm/). The T1w and DTI images were co-registered, and the

images in native space were transformed into the MNI152 space by normalization. Tissue-

based segmentation was performed using the CAT12 toolbox [31]. Defaced T1w images got

skull-stripped using the adaptive probability region-growing (APRG) approach and used as

input for FreeSurfer [32], which was used to apply cortical & subcortical parcellation in order

to project the HCP MMP 1.0 and Harvard-Oxford subcortical atlas to native space via “fsaver-

age”. Noise and distortion correction methods were applied to the DWI images using mrtrix3

[33], FSL [34], and ANT (Advanced Normalization Tools) [35]. Anatomically Constrained

Tractography (ACT) was applied using mrtrix3 with 50 million streamlines yielding the 379 x

Table 1. Feature distributions of the HCP subjects.

Min Max Range (Max—Min) Mean Standard dev.

Age [years] 22 37 15 28.75 3.68

Intelligence, total 88.50 153.36 64.86 122.26 14.46

Intelligence, fluid 86.68 145.17 58.49 115.39 11.54

Intelligence, crystallized 90.95 153.95 63.00 117.92 9.81

Distributions of age as well as total, fluid and crystallized intelligence (measured as unadjusted cognitive function composite score, fluid cognition composite score, and

crystallized cognition composite score, respectively) for the 1048 subjects are shown.

https://doi.org/10.1371/journal.pone.0301599.t001

Table 2. Age distribution of the ADNI subjects.

Min Max Range (Max—Min) Mean Standard dev.

Age [years] 56.5 91.5 55.0 74.43 7.86

Age distribution of 94 cognitively normal aged subjects from the ADNI study.

https://doi.org/10.1371/journal.pone.0301599.t002
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379 connectivity matrices used for the analysis. All processing steps were assembled to a stand-

alone pipeline optimized for automated execution (referred to as NICARA or in-house pipe-

line) and run by our proprietary neuroimaging solution NICARA Version 2.0, Labvantage—

Biomax GmbH, Planegg Germany (https://nicara.eu).

Feature prediction

In order to predict features based on the structural connectivity matrices, we applied the corre-

lation-based regression algorithm proposed by Han et al. [21].

Given n subjects and m edges (depending on the brain parcellation), we first obtained a cor-

relation vector R of size m from the correlation between the matrix A of unnormalized connec-

tion strengths of size n x m (containing the vectorized connectivity matrices per subject as

rows) and the attribute of interest (Eq 1).

Ri ¼ rðAi; bÞ ð1Þ

Fig 1. Gender-specific age distribution of the HCP and ADNI subjects.

https://doi.org/10.1371/journal.pone.0301599.g001
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The correlation vector R contains the Pearson’s correlation coefficients r (Eq 2) between Ai

(with Ai being the ith column of matrix A) and b, a vector of length n containing the values of

the attribute of interest (e.g. age) for each subject.

rAi ;b
¼

P
ðAi � mAi

Þðb � mbÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
ðAi � mAi

Þ
2P
ðb � mbÞ

2
q ð2Þ

Subsequently, we calculated the vector of predictor values S of size n for the regression anal-

ysis by summing up each subject’s connection strengths weighted by the respective correlation

coefficient of the edge (Eq 3).

Sj ¼
Xm� 1

x¼0

Ax;j � Rx ð3Þ

The predictor value Sj for subject j is the scalar product of the vectors Aj and Rx.

Based on the predictor values we fitted a simple linear least-squares regression model that

was then used for predicting the feature value of interest. To assess and compare the prediction

quality, a 10-fold cross-validation was performed for each dataset. R was calculated from the

training data only and the Pearson’s r between predicted and actual values as well as the mean

absolute error (Eq 4) and range-normalized mean absolute error were calculated from the ten

iterations of the cross-validation.

MAE ¼
Pk

i¼1
jgi � hij

k
ð4Þ

The mean absolute error (MAE) is the norm of the difference of predicted values g and the

real values h. The range-normalized mean absolute error (NMAE) can be obtained by dividing

the MAE by the difference of the maximal and minimal value of the data and therefore allows

for a better comparability between different datasets (unpaired data).

Statistical analysis

Statistical analysis was performed based on the paired absolute errors of subjects obtained

from the cross-validation using the Wilcoxon signed-rank test. Comparisons were done

between the different datasets of the same feature to determine differences in the as well as

within each dataset between crystallized and fluid intelligence. We applied the Benjamini-

Hochberg multiple testing correction with a false discovery rate (FDR) of 0.05 to the p-values

of each analysis.

Results

We applied the correlation-based regression algorithm (S1 File) to predict age for different

HCP datasets comprising 1048 subjects (NICARA, braingraph.org datasets) and a subset of

the ADNI study comprising 94 subjects, as well as different intelligence measures in case of the

HCP datasets. Group comparisons were performed based on the mean absolute error (Eq 4) as

well as the Pearson correlation coefficient between the actual and predicted values based on a

regression analysis of the total data as well as gender-specific subgroups. Then we applied the

Wilcoxon signed-rank test for age, total, crystallized and fluid intelligence to identify differ-

ences in the paired absolute errors over the different pipeline conditions. Finally, Wilcoxon

signed-rank tests of the paired absolute errors revealed significant differences between crystal-

lized and fluid intelligence in all comparisons.
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Age prediction

For the HCP datasets, the maximal observed Pearson correlation coefficients between the fea-

tures and age per dataset ranged from 0.105 for the 129 node braingraph dataset to 0.227 for

the in-house pipeline (S3 Table), while the minimal Pearson coefficients ranged from -0.104

for the in-house pipeline to -0.168 for the 86 and 129 node braingraph datasets (S4 Table). The

maximum for the ADNI dataset was r = 0.619 and the minimum r = -0.550, therefore stronger

compared to the values observed in the HCP datasets.

Our in-house pipeline achieved the highest Pearson correlation between actual and pre-

dicted age values (r = 0.21) and the lowest mean absolute error (MAE = 3.02) out of the data-

sets (Table 3; Fig 2). Within the braingraph datasets, the MAE slightly increased with the

number of ROIs (3.02 to 3.13). Based on the Wilcoxon signed-rank test for the paired absolute

errors of the full datasets, the difference between the NICARA dataset and the following brain-

graph datasets was significant before a multiple testing correction: braingraph 129 ROIs

(p = 0.0251), braingraph 234 ROIs (p = 0.0245), braingraph 463 ROIs (p = 0.0127) and brain-

graph 1015 ROIs (p = 0.0085). Within the braingraph datasets, the following were significant:

86 vs 1015 ROIs (p = 0.0350), 234 vs 463 ROIs (p = 0.0478) and 234 vs 1015 ROIs (p = 0.0251).

However, after applying the Benjamini-Hochberg multiple testing correction (FDR = 0.05),

none of the p-values remained significant. In the gender-specific subgroups, the following two

datasets showed a significant p-value for males before but not after multiple testing correction:

86 vs 129 ROIs (p = 0.035) and 86 vs 234 ROIs (p = 0.006).

The prediction result for the ADNI data (Fig 3) achieved a higher correlation value between

predicted and real values (r = 0.57) compared to the HCP datasets (rmax = 0.22) and a lower

NMAE (0.14) compared to the best value out of the HCP datasets (0.20).

Table 3. Prediction outcome using the correlation-based regression method for age.

Pearson‘s r MAE NMAE

NICARA T: 0.21 (p = 2.72e-12) T: 3.02 (±1.95) T: 0.2012

379 ROIs M: 0.14 (p = 0.0018) M: 3.04 (±1.97) M: 0.2024

F: 0.20 (p = 1.21e-6) F: 2.93 (±1.96) F: 0.2095

braingraph T: 0.16 (p = 7.98e-05) T: 3.07 (±1.99) T: 0.2049

86 ROIs M: 0.17 (p = 0.0003) M: 3.02 (±2.08) M: 0.2011

F: 0.14 (p = 0.0010) F: 3.03 (±2.01) F: 0.2163

braingraph T: 0.16 (p = 2.34e-7) T: 3.09 (±2.02) T: 0.2058

129 ROIs M: 0.13 (p = 0.0031) M: 3.07 (±2.16) M: 0.2049

F: 0.13 (p = 0.0013) F: 3.04 (±2.07) F: 0.2171

braingraph T: 0.17 (p = 4.50e-8) T: 3.09 (±2.05) T: 0.2062

234 ROIs M: 0.14 (p = 0.0025) M: 3.11 (±2.18) M: 0.2073

F: 0.14 (p = 0.0010) F: 3.05 (±2.14) F: 0.2179

braingraph T: 0.17 (p = 1.80e-8) T: 3.11 (±2.09) T: 0.2076

463 ROIs M: 0.15 (p = 0.0005) M: 3.07 (±2.18) M: 0.2050

F: 0.14 (p = 0.0006) F: 3.06 (±2.18) F: 0.2183

braingraph T: 0.19 (p = 1.12e-9) T: 3.13 (±2.12) T: 0.2086

1015 ROIs M: 0.15 (p = 0.0007) M: 3.06 (±2.14) M: 0.2038

F: 0.16 (p = 0.0002) F: 3.02 (±2.14) F: 0.2160

Shown is the Pearson correlation r between the predicted and actual subjects’ value and its p-value, the mean

absolute error (MAE) obtained from a 10-fold cross-validation as well as the range-normalized MAE (NMAE). The

highest observed correlation and lowest MAE for each group is highlighted in bold. T: All subjects (total), M: Male

subjects only, F: Female subjects only.

https://doi.org/10.1371/journal.pone.0301599.t003
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Dividing the data into gender-specific groups slightly improved the prediction quality for

the ADNI data in case of females (rF = 0.68, NMAEF = 0.14), but slightly decreased it for the

male-only subjects (rM = 0.52, NMAEM = 0.17; Table 4). For the HCP data, gender-specific

analysis led to inconsistent results and mostly worse prediction outcome when compared to

the total dataset, but the female subgroup tended to perform better than the male subgroup.

Intelligence prediction

The maximal observed Pearson correlation coefficients between the features and intelligence

per dataset ranged from 0.127 (129 node braingraph dataset) to 0.168 (1015 ROI braingraph

dataset) for total intelligence, from 0.108 (86 ROI braingraph dataset) to 0.139 (1015 ROI

braingraph dataset) for fluid intelligence, and from 0.142 (86 ROI braingraph dataset) to 0.189

(1015 ROI braingraph dataset) for crystallized intelligence (S3 Table), The minimal observed

Pearson correlation coefficients between the features and intelligence per dataset ranged from

-0.153 (86 ROI braingraph dataset) to -0.235 (in-house pipeline) for total intelligence, from

-0.129 (86 ROI braingraph dataset) to -0.185 (in-house pipeline) for fluid intelligence, and

from -0.151 (129 ROI braingraph dataset) to -0.236 (NICARA) for crystallized intelligence

(S4 Table).

The prediction for the different intelligence measures performed similarly between all avail-

able datasets. Data from the in-house pipeline showed the lowest MAE for total (11.47) and

fluid (9.36) intelligence while the 129 ROI braingraph dataset had the lowest MAE (7.67) in

case of crystallized intelligence (Tables 5–7).

The braingraph dataset with 1015 ROIs showed the highest correlation values for all intelli-

gence measures for all subjects with r = 0.24 (Tables 5–7; Figs 4–6). Within the braingraph

datasets, increasing ROI number showed the tendency to increase the MAE but also slightly

the correlation between actual and predicted values. For total intelligence, only the absolute

Fig 2. Prediction results for the HCP dataset (age) for NICARA and the 1015 ROI dataset from braingraph.org. The x-axis shows the actual age in years

and the y-axis the predicted age in years during the cross-validation.

https://doi.org/10.1371/journal.pone.0301599.g002
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error differences between the NICARA and 1015 ROI braingraph dataset was significant based

on the Wilcoxon signed-rank test (p = 0.0411). For fluid intelligence, there were only signifi-

cant differences for 234 vs. 1015 ROI braingraph (p = 0.0341) and 463 vs 1015 ROI braingraph

(p = 0.0140). Lastly, for crystallized intelligence, several absolute error differences were signifi-

cant: NICARA vs. 463 ROI braingraph (p = 0.0489), NICARA vs. 1015 ROI braingraph

(p = 0.0195), 86 vs 1015 ROI braingraph (p = 0.0280), 129 vs 234 ROI braingraph (p = 0.0399),

Fig 3. Prediction results for the ADNI dataset (age) for the total dataset (bottom) and the gender-specific subsets (top). The x-axis shows the actual age in years

and the y-axis the predicted age in years during the cross-validation.

https://doi.org/10.1371/journal.pone.0301599.g003
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129 vs. 1015 ROI braingraph (p = 0.0125), 234 vs 1015 ROI braingraph (p = 0.0238), and 463

vs. 1015 ROI braingraph (p = 0.0273). None of the p-values remained significant after applying

the Benjamini-Hochberg multiple testing correction (FDR = 0.05).

For the comparisons of absolute errors in the gender-specific subgroups for total intelli-

gence, 129 vs 234 ROI braingraph (p = 0.045) was significant in the male subgroup and 86 vs

463 ROI (p = 0.0362), 86 vs 1015 ROI (p = 0.0128), 129 vs 1015 ROI (p = 0.0223), and 234 vs

1015 ROI (p = 0.0231) in the female subgroup before but not after multiple testing correction.

For crystallized intelligence, 129 vs 234 ROI (p = 0.0417) showed significance in the male sub-

group and the following in the female subgroup: NICARA vs 234 ROI (p = 0.0253), NICARA

vs 463 ROI (p = 0.0252), and NICARA vs 1015 ROI (p = 0.0262). None of the p-values

remained significant after multiple testing correction. For fluid intelligence in the male sub-

group, the following comparisons were significant before multiple testing correction: NICARA

vs 234 ROI (p = 0.0285), 86 vs 129 ROI (p = 0.0357), 86 vs 234 ROI (p = 0.0178), 129 vs 1015

Table 4. Prediction results for the ADNI dataset.

Pearson‘s r (actual vs. predicted values) MAE NMAE

All subjects r = 0.5701 (p = 4.48E-09) 5.05 (±3.78) 0.1448

Male r = 0.5159 (p = 0.0007) 5.02(±3.54) 0.1662

Female r = 0.6828 (p = 1.28E-08) 5.07 (±3.43) 0.1449

Prediction results for the age in years based on a 10-fold cross-validation for 94 control subjects from the ADNI

dataset (40 males, 54 females).

https://doi.org/10.1371/journal.pone.0301599.t004

Table 5. Prediction outcome using the correlation-based regression method for total intelligence.

Pearson‘s r MAE NMAE

NICARA T: 0.21 (p = 9.97e-12) T: 11.47 (±8.29) T: 0.1769

379 ROIs M: 0.13 (p = 0.0047) M: 11.88 (±8.34) M: 0.1832

F: 0.26 (p = 8.33e-10) F: 11.14 (±8.18) F: 0.1730

braingraph T: 0.20 (p = 4.07e-11) T: 11.59 (±8.26) T: 0.1787

86 ROIs M: 0.11 (p = 0.0134) M: 12.22 (±8.78) M: 0.1884

F: 0.19 (p = 9.00e-6) F: 11.37 (±8.41) F: 0.1765

braingraph T: 0.20 (p = 2.88e-11) T: 11.60 (±8.27) T: 0.1789

129 ROIs M: 0.13 (p = 0.0034) M: 12.20 (±8.86) M: 0.1880

F: 0.18 (p = 1.20e-5) F: 11.44 (±8.41) F: 0.1777

braingraph T: 0.21 (p = 1.02e-11) T: 11.64 (±8.27) T: 0.1795

234 ROIs M: 0.14 (p = 0.0022) M: 12.30 (±8.99) M: 0.1897

F: 0.20 (p = 2.71e-6) F: 11.51 (±8.40) F: 0.1786

braingraph T: 0.22 (p = 9.84e-13) T: 11.68 (±8.27) T: 0.1801

463 ROIs M: 0.16 (p = 0.0005) M: 12.36 (±8.80) M: 0.1906

F: 0.21 (p = 7.17e-7) F: 11.58 (±8.41) F: 0.1798

braingraph T: 0.23 (p = 5.67e-14) T: 11.73 (±8.34) T: 0.1808

1015 ROIs M: 0.16 (p = 0.0004) M: 12.28 (±8.66) M: 0.1894

F: 0.22 (p = 1.42e-7) F: 11.67 (±8.45) F: 0.1811

Shown is the Pearson correlation r between the predicted and actual subjects’ value and its p-value, the mean

absolute error (MAE) obtained from a 10-fold cross-validation as well as the range-normalized MAE (NMAE). The

highest observed correlation and lowest MAE within each group is highlighted in bold. T: All subjects (total), M:

Male subjects only, F: Female subjects only.

https://doi.org/10.1371/journal.pone.0301599.t005

PLOS ONE Predictability of intelligence and age from structural connectomes

PLOS ONE | https://doi.org/10.1371/journal.pone.0301599 April 1, 2024 9 / 20

https://doi.org/10.1371/journal.pone.0301599.t004
https://doi.org/10.1371/journal.pone.0301599.t005
https://doi.org/10.1371/journal.pone.0301599


Table 7. Prediction outcome using the correlation-based regression method for fluid intelligence.

Pearson‘s r MAE NMAE

NICARA T: 0.14 (p = 3.02e-6) T: 9.36 (±6.56) T: 0.1600

379 ROIs M: 0.10 (p = 0.0218) M: 9.76 (±6.82) M: 0.1669

F: 0.21 (p = 6.50e-7) F: 9.07 (±6.28) F: 0.1651

braingraph T: 0.13 (p = 2.74e-5) T: 9.49 (±6.62) T: 0.1623

86 ROIs M: 0.04 (p = 0.3265) M: 10.16 (±7.68) M: 0.1737

F: 0.13 (p = 0.0016) F: 9.25 (±6.42) F: 0.1683

braingraph T: 0.13 (p = 2.70e-5) T: 9.49 (±6.70) T: 0.1622

129 ROIs M: 0.02 (p = 0.6377) M: 10.38 (±7.87) M: 0.1775

F: 0.14 (p = 0.0012) F: 9.29 (±6.46) F: 0.1691

braingraph T: 0.13 (p = 3.48e-5) T: 9.55 (±6.76) T: 0.1632

234 ROIs M: 0.02 (p = 0.7231) M: 10.50 (±8.04) M: 0.1795

F: 0.14 (p = 0.0008) F: 9.35 (±6.53) F: 0.1702

braingraph T: 0.14 (p = 3.01e-6) T: 9.59 (±6.80) T: 0.1640

463 ROIs M: 0.06 (p = 0.2238) M: 10.27 (±7.85) M: 0.1756

F: 0.15 (p = 0.0003) F: 9.43 (±6.58) F: 0.1717

braingraph T: 0.16 (p = 4.46e-7) T: 9.67 (±6.89) T: 0.1653

1015 ROIs M: 0.07 (p = 0.1515) M: 10.07 (±7.64) M: 0.1721

F: 0.17 (p = 5.68e-5) F: 9.53 (±6.60) F: 0.1735

Shown is the Pearson correlation r between the predicted and actual subjects’ value and its p-value, the mean

absolute error (MAE) obtained from a 10-fold cross-validation as well as the range-normalized MAE (NMAE). The

highest observed correlation and lowest MAE within each group is highlighted in bold. T: All subjects (total), M:

Male subjects only, F: Female subjects only.

https://doi.org/10.1371/journal.pone.0301599.t007

Table 6. Prediction outcome using the correlation-based regression method for crystallized intelligence.

Pearson‘s r MAE NMAE

NICARA T: 0.21 (p = 9.93e-12) T: 7.68 (±5.76) T: 0.1220

379 ROIs M: 0.13 (p = 0.0058) M: 7.94 (±6.07) M: 0.1312

F: 0.25 (p = 1.71e-9) F: 7.43 (±5.49) F: 0.1363

braingraph T: 0.21 (p = 2.23e-12) T: 7.68 (±5.79) T: 0.1219

86 ROIs M: 0.16 (p = 0.0005) M: 7.87 (±6.27) M: 0.1301

F: 0.20 (p = 2.38e-6) F: 7.65 (±5.51) F: 0.1403

braingraph T: 0.22 (p = 6.30e-13) T: 7.67 (±5.80) T: 0.1218

129 ROIs M: 0.18 (p = 5.32e-5) M: 7.82 (±6.29) M: 0.1293

F: 0.20 (p = 3.19e-6) F: 7.69 (±5.52) F: 0.1409

braingraph T: 0.22 (p = 1.57e-13) T: 7.69 (±5.79) T: 0.1221

234 ROIs M: 0.18 (p = 0.0001) M: 7.91 (±6.41) M: 0.1307

F: 0.21 (p = 4.60e-7) F: 7.74 (±5.48) F: 0.1419

braingraph T: 0.23 (p = 7.58e-14) T: 7.71 (±5.83) T: 0.1224

463 ROIs M: 0.19 (p = 4.40e-5) M: 7.97 (±6.44) M: 0.1318

F: 0.22 (p = 1.73e-7) F: 7.77 (±5.54) F: 0.1423

braingraph T: 0.24 (p = 4.82e-15) T: 7.76 (±5.85) T: 0.1232

1015 ROIs M: 0.19 (p = 2.81e-5) M: 7.98 (±6.40) M: 0.1319

F: 0.23 (p = 7.02e-8) F: 7.81 (±5.60) F: 0.1432

Shown is the Pearson correlation r between the predicted and actual subjects’ value and its p-value, the mean

absolute error (MAE) obtained from a 10-fold cross-validation as well as the range-normalized MAE (NMAE). The

highest observed correlation and lowest MAE within each group is highlighted in bold. T: All subjects (total), M:

Male subjects only, F: Female subjects only.

https://doi.org/10.1371/journal.pone.0301599.t006
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Fig 4. Prediction results for the HCP dataset (total intelligence) for NICARA and the 1015 ROI dataset from braingraph.org. The x-axis shows the actual

values and the y-axis the predicted values during the cross-validation.

https://doi.org/10.1371/journal.pone.0301599.g004

Fig 5. Prediction results for the HCP dataset (fluid intelligence) for NICARA and the 1015 ROI dataset from braingraph.org. The x-axis shows the actual

values and the y-axis the predicted values during the cross-validation.

https://doi.org/10.1371/journal.pone.0301599.g005
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ROI (p = 0.0140), 234 vs 463 ROI (p = 0.0107), 234 vs 1015 ROI (p = 0.0010), 463 vs 1015 ROI

(p = 0.0332). The comparison between 234 and 1015 ROI braingraph datasets did remain sig-

nificant even after the multiple testing correction. In the female subgroup for fluid intelligence,

the following comparisons were significant before but not after multiple testing correction: 86

vs 463 ROI (p = 0.0227), 86 vs 1015 ROI (p = 0.0058), 129 vs 463 ROI (p = 0.0376), 129 vs 1015

ROI (p = 0.0110), 234 vs 463 ROI (p = 0.0496), 234 vs 1015 ROI (p = 0.0086), and 463 vs 1015

ROI (p = 0.0313).

Considering the relatively good Pearson correlation scores of NICARA among gender-spe-

cific groups versus pipeline conditions for both crystallized and fluid intelligence, we report

two interesting trends from the gender-specific results by Wilcoxon signed-rank test of the

absolute errors: The first trend shows difference in female group between NICARA and 234

ROI braingraph dataset for crystallized intelligence (p = 0.025; Fig 7). And the second trend

reveals a difference in the male group for same comparisons of fluid intelligence (p = 0.0285;

Fig 8).

Since the cognition fluid and crystallized composite score have the same range and we also

applied the Wilcoxon signed-rank test to the absolute error differences between them. The dif-

ferences were significant for all datasets (Table 8) and all of them remained significant after a

Benjamini-Hochberg multiple testing correction (FDR = 0.05).

Gender-specific analysis led to a worse prediction outcome for males in case of total intelli-

gence for all datasets compared to the results for all subjects. For females, the outcome

improved for all datasets except for the 1015 ROI dataset based on the NMAE, but the correla-

tion value only improved for the NICARA dataset compared to the total data. For crystallized

and fluid intelligence, gender-specific analysis did not improve the outcome. In case of fluid

intelligence, the correlation values between actual and predicted values for the male subgroup

in the braingraph datasets were not even significant anymore (Table 7).

Fig 6. Prediction results for the HCP dataset (crystallized intelligence) for NICARA and the 1015 ROI dataset from braingraph.org. The x-axis shows the

actual values and the y-axis the predicted values during the cross-validation.

https://doi.org/10.1371/journal.pone.0301599.g006
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Discussion

In this study, we investigated the predictability of age and intelligence measures based on

whole brain structural connectome measurement under various conditions of imaging pro-

cessing and gender. First, we demonstrated that NICARA processing combined with our

machine learning approach could well predict age of ADNI subjects but performed worse for

HCP subjects consistent with braingraph.org results. Second, crystallized intelligence was bet-

ter predicted than fluid intelligence in general. Finally, we found two interesting trends of gen-

der effects for fluid and crystallized intelligence predictability that did not remain significant

after multiple testing correction.

Using a simple machine learning approach based on whole brain structural connectivity

only we were able to decently predict age for cognitively normal ADNI-3 control subjects

(N = 94) with a distinct age range (r = 0.57, NMAE = 0.14). Our finding is similar to that of

recent studies both in MAE and std of age prediction using structural connectivity data of

ADNI [36, 37], although both studies employed different workflows to extract structural con-

nectivity features and different prediction methods.

However, the prediction quality for age was worse in case of the HCP young adult dataset

(r = 0.21, NMAE = 0.20), which only covered a narrow range of young subjects, for both inves-

tigated pipelines (in-house and braingraph.org) under different parcellation methods despite

its large size (N = 1048). Multi-factor characteristics of HCP Young Adult dataset structural

Fig 7. MAE of crystallized intelligence prediction. Total dataset: green, Female subset: blue, Male subset: red. *: p< 0.05 without correction based on the

Wilcoxon signed-rank test for paired absolute errors.

https://doi.org/10.1371/journal.pone.0301599.g007
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connectivity could account for limited predictability of age. This effect of the HCP dataset is

evident by comparable age prediction quality from distinct processing approaches of NICARA

versus braingraph.org.

For subjects of the HCP Young Adult study, total, fluid and crystallized intelligence values

were measured as cognition composite scores. The overall low predictability of intelligence by

whole brain structural connectome features confirmed the statement of Wu and colleagues’

work [38] that their prediction combining cortical and subcortical surfaces together yielded

the highest accuracy of fluid intelligence for both ABCD (N = 8070, r = 0.314) and HCP data-

sets (N = 1097, r = 0.454), outperforming the state-of-the-art prediction of fluid intelligence

from any other brain measures in the literature. Wu and colleagues developed a novel graph

convolutional neural networks (gCNNs) for the analysis of localized anatomic shape and

Fig 8. MAE of fluid intelligence prediction. Total dataset: green, Female subset: blue, Male subset: red. *: p< 0.05 without correction based on the Wilcoxon

signed-rank test for paired absolute errors.

https://doi.org/10.1371/journal.pone.0301599.g008

Table 8. P-values from the comparison between crystallized and fluid intelligence.

NICARA braingraph braingraph braingraph braingraph braingraph

379 ROIs 86 ROIs 129 ROIs 234 ROIs 463 ROIs 1015 ROIs

Total 1.38e-10 4.04e-11 4.19e-11 2.18e-11 2.62e-11 1.84e-11

Male 3.26e-06 8.30e-07 7.12e-08 7.35e-08 2.86e-06 1.65e-05

Female 2.18e-06 6.24e-06 6.42e-06 6.33e-06 2.26e-06 8.32e-07

P-values from the Wilcoxon signed-rank test between the absolute errors from crystallized and fluid intelligence prediction for each dataset. All p-values remained

significant after the Benjamini-Hochberg multiple testing correction (FDR = 0.05).

https://doi.org/10.1371/journal.pone.0301599.t008
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prediction of fluid intelligence. Krämer et al. [39] reported a similar outcome to this study for

a small trend for a multimodal benefit therefore concluded that developing a biomarker for

cognitive aging remained challenging. Their study employed multimodal information, i.e.,

region-wise grey matter volume (GMV), resting-state functional connectivity (RSFC), and

structural connectivity (SC), and generalized results across different ML approaches in 594

healthy older adults (age range: 55–85 years) from the 1000BRAINS dataset.

Predictability of crystallized intelligence was better than that of fluid intelligence in all

investigated datasets based on the Wilcoxon signed-rank test applied to the paired absolute

errors (Table 8), which may imply a stronger relation between crystallized intelligence and

whole brain white matter probabilistic tractography based connectivity than that of fluid intel-

ligence. Similar findings have been published by investigating distinct multi-region neuroana-

tomical patterns extracted from grey matter surface as well as volumetric assessments in 1089

HCP subjects by employing an elastic net regression model [40]. Our finding is also consistent

with another study that investigated 415 HCP subjects by a similar tractography method but

using only 86 ROIs from FreeSurfer [41]. A much finer atlas parcellation with 439 ROIs cre-

ated in that study did not show a significant difference in predictability between crystallized

and fluid intelligence [41]. Other papers considered highly correlated neuroanatomical mor-

phometry profiles, i.e. cortical surface area, and the environmental impact on the relevant

neuroanatomical morphometry as explanations for better predictability of crystallized intelli-

gence compared to fluid intelligence [40, 42].

Interestingly, we find tendencies of slightly better prediction of intelligence in NICARA by

gender-specific subgroup analysis based on the range-normalized mean absolute errors and

pearson correlation between actual and predicted values. This supports the finding that gender

specific factors [43–48] may affect connectivity as well as the relationship between connec-

tomics and cognition [11].

With the publicly available braingraph.org dataset, connectome data from a second struc-

tural connectome extraction method for the same HCP subjects was available with five differ-

ent parcellations (86, 129, 234, 463 and 1015 ROIs). Within the braingraph datasets, the MAE

showed the tendency to increase with a higher ROI number. This may be due to the parcella-

tion method itself, or the fact that the resulting connectivity matrix might be too sparse using

only 1 million streamlines for finer parcellation [41, 49–51]. However, the differences between

the different braingraph datasets were not significant after correcting the p-values obtained by

Wilcoxon signed-rank tests between the paired absolute errors for multiple testing using the

Benjamini-Hochberg method (FDR = 0.05).

Limitations

An obvious shortcoming of the HCP Young Adult subjects for prediction of age and intelli-

gence are the biases in the data distribution. The data only contained young subjects (aged 22–

37 years), and the cognition composite scores are clearly biased towards higher values. 100 is

the United States average but the mean values for the three scores of the 1048 subjects were all

higher than that (Table 1). We could show the influence of the age range by also applying the

approach to control subjects from the ADNI-3 study with an age range about twice as large (Δ
= 35.0 years vs. Δ = 15 years) resulting in a better prediction performance (reflected by a lower

NMAE and a higher correlation between actual and predicted values), even though these sub-

jects were also biased as they contained elderly individuals only (56.5–91.5 years).

Apart from the bias, a possible explanation for the low predictability of intelligence in this

study can be seen in the structural correlates of intelligent behavior. Human intelligence is

thought to be associated with physiological and morphological properties of cortical pyramidal
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neurons [52], which, of course, can only be captured indirectly by whole brain DTI-based fiber

tracking.

Future approaches

To certify the age prediction, it would be favorable to apply the proposed approach to a dataset

with a wider age range such as the Lifespan Human Connectome Project in Aging [53] once it

is complete and available. Moreover, it has been previously discussed whether sets of connec-

tions would uniquely map onto cognitive function [54]. Further work could elaborate on this

idea to test whether specific functional brain networks [55] and their connectedness are more

predictive than individual or sets of connections alone. From studies with multiple sclerosis

patients, it is known that graph theoretical measures are better descriptors of cognitive decline

[56, 57] than the strengths of individual connections. For future studies on prediction qualities

of the connectome for cognitive measures it would therefore be favorable to include graph the-

oretical measures [58] as well. Combining structural and functional brain networks for intelli-

gence prediction revealed so far ambivalent results [40]. Here is certainly more work needed,

for example, by using brain multiplex networks [59] to increase predictive power of multi-

modal connectomes. Being able to predict brain age and intelligence from brain connectivity

has a large impact on monitoring disease progression in dementia or other brain diseases asso-

ciated with cognitive decline, for example, multiple sclerosis.

Conclusion

In conclusion, this study explores the predictability of age and intelligence in cognitive normal

subjects from the HCP and ADNI datasets by means of whole brain tractography-based struc-

tural connectome applying a simple and easy-to-use established machine-learning method. To

our knowledge, this is the first study focusing on a single neuroimaging modality feature to

predict age and intelligence from whole-brain tractography. The good predictability of age in

ADNI and the finding that crystallized intelligence was better predictable than fluid intelli-

gence in HCP datasets was possible by the combination of the NICARA structural connectome

pipeline and a simple machine learning model. Therefore, we believe that such a combination

could provide a reliable framework option to further narrow down the gap in prediction

between neuroimaging features and subjects’ cognition as well as other biological features.
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20. Góngora D, Vega-Hernández M, Jahanshahi M, Valdés-Sosa PA, Bringas-Vega ML, et al. Crystallized

and fluid intelligence are predicted by microstructure of specific white-matter tracts. Hum Brain Mapp.

2020 Mar; 41(4):906–916. https://doi.org/10.1002/hbm.24848 Epub 2019 Nov 5. PMID: 32026600;

PMCID: PMC7267934.

21. Han CE, Peraza LR, Taylor J, & Kaiser M. Predicting age across human lifespan based on structural

connectivity from diffusion tensor imaging. 2014. 2014 IEEE Biomedical Circuits and Systems Confer-

ence (BioCAS) Proceedings, Lausanne pp. 137–140. https://doi.org/10.1109/BioCAS.2014.6981664

22. Shen X, Finn ES, Scheinost D, Rosenberg MD, Chun MM, Papademetris X, et al. Using connectome-

based predictive modeling to predict individual behavior from brain connectivity. Nat Protoc. 2017 Mar;

12(3):506–518. https://doi.org/10.1038/nprot.2016.178 Epub 2017 Feb 9. PMID: 28182017; PMCID:

PMC5526681.

23. Biomax. Biomax NICARATM integrates structural brain connectomics [White paper]. 2020. https://www.

biomax.com/lib/products/nicara/Biomax_NICARA_WhitePaper.pdf

24. Kerepesi C, Szalkai B, Varga B, Grolmusz V. The braingraph.org database of high resolution structural

connectomes and the brain graph tools. Cogn Neurodyn. 2017 Oct; 11(5):483–486. https://doi.org/10.

1007/s11571-017-9445-1 Epub 2017 Jun 20. PMID: 29067135; PMCID: PMC5637719.

PLOS ONE Predictability of intelligence and age from structural connectomes

PLOS ONE | https://doi.org/10.1371/journal.pone.0301599 April 1, 2024 18 / 20

https://doi.org/10.1002/hbm.24899
http://www.ncbi.nlm.nih.gov/pubmed/31837193
https://doi.org/10.1016/j.dcn.2022.101123
http://www.ncbi.nlm.nih.gov/pubmed/35751994
https://doi.org/10.1002/hbm.23291
http://www.ncbi.nlm.nih.gov/pubmed/27329671
https://doi.org/10.1098/rstb.2017.0284
http://www.ncbi.nlm.nih.gov/pubmed/30104429
https://doi.org/10.1093/cercor/bhz134
http://www.ncbi.nlm.nih.gov/pubmed/31364696
https://doi.org/10.1016/j.cmpb.2015.11.012
http://www.ncbi.nlm.nih.gov/pubmed/26718834
https://doi.org/10.1016/j.neuroimage.2022.119319
https://doi.org/10.1016/j.neuroimage.2022.119319
http://www.ncbi.nlm.nih.gov/pubmed/35589001
https://doi.org/10.1111/j.2044-8279.1967.tb01930.x
http://www.ncbi.nlm.nih.gov/pubmed/6063107
https://doi.org/10.1017/S1355617714000307
http://www.ncbi.nlm.nih.gov/pubmed/24960474
https://doi.org/10.1037/a0026699
https://doi.org/10.1037/a0026699
http://www.ncbi.nlm.nih.gov/pubmed/22233090
https://doi.org/10.31887/DCNS.2012.14.1/rsternberg
https://doi.org/10.31887/DCNS.2012.14.1/rsternberg
http://www.ncbi.nlm.nih.gov/pubmed/22577301
https://doi.org/10.1017/S1355617714000241
http://www.ncbi.nlm.nih.gov/pubmed/24960398
https://doi.org/10.1016/j.brainres.2021.147431
http://www.ncbi.nlm.nih.gov/pubmed/33737067
https://doi.org/10.1002/hbm.24848
http://www.ncbi.nlm.nih.gov/pubmed/32026600
https://doi.org/10.1109/BioCAS.2014.6981664
https://doi.org/10.1038/nprot.2016.178
http://www.ncbi.nlm.nih.gov/pubmed/28182017
https://www.biomax.com/lib/products/nicara/Biomax_NICARA_WhitePaper.pdf
https://www.biomax.com/lib/products/nicara/Biomax_NICARA_WhitePaper.pdf
http://braingraph.org
https://doi.org/10.1007/s11571-017-9445-1
https://doi.org/10.1007/s11571-017-9445-1
http://www.ncbi.nlm.nih.gov/pubmed/29067135
https://doi.org/10.1371/journal.pone.0301599


25. Van Essen DC, Smith SM, Barch DM, Behrens TE, Yacoub E, Ugurbil K, et al. The WU-Minn Human

Connectome Project: an overview. Neuroimage. 2013 Oct 15; 80:62–79. https://doi.org/10.1016/j.

neuroimage.2013.05.041 Epub 2013 May 16. PMID: 23684880; PMCID: PMC3724347.

26. Weiner MW, Veitch DP, Aisen PS, Beckett LA, Cairns NJ, Green RC, et al. The Alzheimer’s Disease

Neuroimaging Initiative 3: Continued innovation for clinical trial improvement. Alzheimers Dement. 2017

May; 13(5):561–571. https://doi.org/10.1016/j.jalz.2016.10.006 Epub 2016 Dec 5. PMID: 27931796;

PMCID: PMC5536850.

27. Glasser MF, Coalson TS, Robinson EC, Hacker CD, Harwell J, Yacoub E, et al. A multi-modal parcella-

tion of human cerebral cortex. Nature. 2016 Aug 11; 536(7615):171–178. https://doi.org/10.1038/

nature18933 Epub 2016 Jul 20. PMID: 27437579; PMCID: PMC4990127.

28. Makris N, Goldstein JM, Kennedy D, Hodge SM, Caviness VS, Faraone SV, et al. Decreased volume of

left and total anterior insular lobule in schizophrenia. Schizophr Res. 2006 Apr; 83(2–3):155–71. https://

doi.org/10.1016/j.schres.2005.11.020 Epub 2006 Jan 31. PMID: 16448806.

29. Frazier JA, Chiu S, Breeze JL, Makris N, Lange N, Kennedy DN, et al. Structural brain magnetic reso-

nance imaging of limbic and thalamic volumes in pediatric bipolar disorder. Am J Psychiatry. 2005 Jul;

162(7):1256–65. https://doi.org/10.1176/appi.ajp.162.7.1256 PMID: 15994707.

30. Goldstein JM, Seidman LJ, Makris N, Ahern T, O’Brien LM, Caviness VS Jr, et al. Hypothalamic abnor-

malities in schizophrenia: sex effects and genetic vulnerability. Biol Psychiatry. 2007 Apr 15; 61(8):935–

45. https://doi.org/10.1016/j.biopsych.2006.06.027 Epub 2006 Oct 13. PMID: 17046727.

31. Gaser C, Dahnke R, Thompson PM, Kurth F, Luders E, Alzheimer’s Disease Neuroimaging Initiative.

CAT–A Computational Anatomy Toolbox for the Analysis of Structural MRI Data. Preprint. 2022. https://

doi.org/10.1101/2022.06.11.495736

32. Fischl B. FreeSurfer. Neuroimage. 2012 Aug 15; 62(2):774–81. https://doi.org/10.1016/j.neuroimage.

2012.01.021 Epub 2012 Jan 10. PMID: 22248573; PMCID: PMC3685476.

33. Tournier JD, Smith R, Raffelt D, Tabbara R, Dhollander T, Pietsch M, et al. MRtrix3: A fast, flexible and

open software framework for medical image processing and visualisation. Neuroimage. 2019 Nov 15;

202:116137. https://doi.org/10.1016/j.neuroimage.2019.116137 Epub 2019 Aug 29. PMID: 31473352.

34. Jenkinson M, Beckmann CF, Behrens TE, Woolrich MW, Smith SM. FSL. Neuroimage. 2012 Aug 15;

62(2):782–90. https://doi.org/10.1016/j.neuroimage.2011.09.015 Epub 2011 Sep 16. PMID: 21979382.

35. Avants BB, Tustison NJ, Song G, Cook PA, Klein A, Gee JC. A reproducible evaluation of ANTs similar-

ity metric performance in brain image registration. Neuroimage. 2011 Feb 1; 54(3):2033–44. https://doi.

org/10.1016/j.neuroimage.2010.09.025 Epub 2010 Sep 17. PMID: 20851191; PMCID: PMC3065962.

36. Yu J, Mathi Kanchi M, Rawtaer I, Feng L, Kumar AP, Kua EH, et al. Differences between multimodal

brain-age and chronological-age are linked to telomere shortening. Neurobiol Aging. 2022 Jul; 115:60–

69. https://doi.org/10.1016/j.neurobiolaging.2022.03.015 Epub 2022 Mar 31. PMID: 35472831; PMCID:

PMC9133148.

37. More S, Antonopoulos G, Hoffstaedter F, Caspers J, Eickhoff SB, Patil KR, et al. Brain-age prediction:

A systematic comparison of machine learning workflows. Neuroimage. 2023 Apr 15; 270:119947.

https://doi.org/10.1016/j.neuroimage.2023.119947 Epub 2023 Feb 16. PMID: 36801372.

38. Wu Y, Besson P, Azcona EA, Bandt SK, Parrish TB, Breiter HC, et al. A multicohort geometric deep

learning study of age dependent cortical and subcortical morphologic interactions for fluid intelligence

prediction. Sci Rep. 2022 Oct 22; 12(1):17760. https://doi.org/10.1038/s41598-022-22313-x PMID:

36273036; PMCID: PMC9588039.
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